Identification and Molecular Mapping of a Gene in Wheat Conferring Resistance to Mycosphaerella graminicola.
نویسندگان
چکیده
ABSTRACT Septoria tritici leaf blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), is an economically important disease of wheat. Breeding for resistance to STB is the most effective means to control this disease and can be facilitated through the use of molecular markers. However, molecular markers linked to most genes for resistance to STB are not yet available. This study was conducted to test for resistance in the parents of a standard wheat mapping population and to map any resistance genes identified. The population consisted of 130 F(10) recombinant-inbred lines (RILs) from a cross between the synthetic hexaploid wheat W7984 and cv. Opata 85. Genetic analysis indicated that a single major gene controls resistance to M. graminicola in this population. This putative resistance gene is now designated Stb8 and was mapped with respect to amplified fragment length polymorphism (AFLP) and microsatellite markers. An AFLP marker, EcoRI-ACG/MseI-CAG5, was linked in repulsion with the resistance gene at a distance of approximately 5.3 centimorgans (cM). Two flanking microsatellite markers, Xgwm146 and Xgwm577, were linked to the Stb8 gene on the long arm of wheat chromosome 7B at distances of 3.5 and 5.3 cM, respectively. The microsatellite markers identified in this study have potential for use in marker-assisted selection in breeding programs and for pyramiding of Stb8 with other genes for resistance to M. graminicola in wheat.
منابع مشابه
A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic kinkage map of Mycosphaerella graminicola, the septoria tritici leaf blotch pathogen of wheat.
An F(1) mapping population of the septoria tritici blotch pathogen of wheat, Mycosphaerella graminicola, was generated by crossing the two Dutch field isolates IPO323 and IPO94269. AFLP and RAPD marker data sets were combined to produce a high-density genetic linkage map. The final map contained 223 AFLP and 57 RAPD markers, plus the biological traits mating type and avirulence, in 23 linkage g...
متن کاملOrigin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation.
The Fertile Crescent represents the center of origin and earliest known place of domestication for many cereal crops. During the transition from wild grasses to domesticated cereals, many host-specialized pathogen species are thought to have emerged. A sister population of the wheat-adapted pathogen Mycosphaerella graminicola was identified on wild grasses collected in northwest Iran. Isolates ...
متن کاملIdentification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola.
A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99 of them, flanking primers were developed successfully and tested for amplification and polymorphis...
متن کاملA Gene-for-Gene Relationship Between Wheat and Mycosphaerella graminicola, the Septoria Tritici Blotch Pathogen.
ABSTRACT Specific resistances to isolates of the ascomycete fungus Mycosphaerella graminicola, which causes Septoria tritici blotch of wheat, have been detected in many cultivars. Cvs. Flame and Hereward, which have specific resistance to the isolate IPO323, were crossed with the susceptible cv. Longbow. The results of tests on F1 and F2 progeny indicated that a single semidominant gene control...
متن کاملDetection of Mycosphaerella graminicola in Wheat Leaves by a Microsatellite Dinucleotide Specific-Primer
Early detection of infection is very important for efficient management of Mycosphaerella graminicola leaf blotch. To monitor and quantify the occurrence of this fungus during the growing season, a diagnostic method based on real-time PCR was developed. Standard and real-time PCR assays were developed using SYBR Green chemistry to quantify M. graminicola in vitro or in wheat samples. Microsatel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytopathology
دوره 93 9 شماره
صفحات -
تاریخ انتشار 2003